Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

نویسندگان

  • Christopher Staley
  • Abigail P. Ferrieri
  • Malak M. Tfaily
  • Yaya Cui
  • Rosalie K. Chu
  • Ping Wang
  • Jared B. Shaw
  • Charles K. Ansong
  • Heather Brewer
  • Angela D. Norbeck
  • Meng Markillie
  • Fernanda do Amaral
  • Thalita Tuleski
  • Tomás Pellizzaro
  • Beverly Agtuca
  • Richard Ferrieri
  • Susannah G. Tringe
  • Ljiljana Paša-Tolić
  • Gary Stacey
  • Michael J. Sadowsky
چکیده

BACKGROUND The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated. RESULTS Significantly different bacterial community structures (P = 0.031) were observed in the rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles. CONCLUSIONS The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without relevance to time of day may need to be reevaluated with regard to the impact of diurnal cycles on the rhizosphere microbial community.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unravelling the Carbon and Sulphur Metabolism in Coastal Soil Ecosystems Using Comparative Cultivation-Independent Genome-Level Characterisation of Microbial Communities

Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagno...

متن کامل

Plant Phylogeny and Life History Shape Rhizosphere Bacterial Microbiome of Summer Annuals in an Agricultural Field

Rhizosphere microbial communities are critically important for soil nitrogen cycling and plant productivity. There is evidence that plant species and genotypes select distinct rhizosphere communities, however, knowledge of the drivers and extent of this variation remains limited. We grew 11 annual species and 11 maize (Zea mays subsp. mays) inbred lines in a common garden experiment to assess t...

متن کامل

Rhizosphere bacterial communities associated with long-lived perennial prairie plants vary in diversity, composition, and structure.

The goal of this research was to investigate the variation in rhizosphere microbial community composition, diversity, and structure among individual Andropogon gerardii Vitman (big bluestem) and Lespedeza capitata Michx. (bush clover). Bacterial communities from the rhizosphere of 10 plants of each species (n = 20 plants total) were explored using a culture-independent pipeline. Microbial commu...

متن کامل

Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2.

Rising atmospheric CO(2) levels are predicted to have major consequences on carbon cycling and the functioning of terrestrial ecosystems. Increased photosynthetic activity is expected, especially for C-3 plants, thereby influencing vegetation dynamics; however, little is known about the path of fixed carbon into soil-borne communities and resulting feedbacks on ecosystem function. Here, we exam...

متن کامل

Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities

Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning, such as control of greenhouse gas emissions. Therefore, it is important to understand ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017